ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Даны две окружности и точка. Построить отрезок, концы которого лежат на данных окружностях, а середина — в данной точке.

Вниз   Решение


Среди 11 внешне одинаковых монет 10 настоящих, весящих по 20 г, и одна фальшивая, весящая 21 г. Имеются чашечные весы, которые оказываются в равновесии, если груз на правой их чашке ровно вдвое тяжелее, чем на левой. (Если груз на правой чашке меньше, чем удвоенный груз на левой, то перевешивает левая чашка, если больше, то правая.) Как за три взвешивания на этих весах найти фальшивую монету?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 78202

Темы:   [ Комплексные числа в геометрии ]
[ Выпуклые многоугольники ]
Сложность: 4
Классы: 10,11

Даны n комплексных чисел C1, C2,..., Cn, таких, что если их представлять себе как точки плоскости, то они являются вершинами выпуклого n-угольника. Доказать, что если комплексное число z обладает тем свойством, что

$\displaystyle {\frac{1}{z-C_1}}$ + $\displaystyle {\frac{1}{z-C_2}}$ + ... + $\displaystyle {\frac{1}{z-C_n}}$ = 0,

то точка плоскости, соответствующая z, лежит внутри этого n-угольника.
Прислать комментарий     Решение

Задача 58395

Темы:   [ Комплексные числа в геометрии ]
[ Свойства инверсии ]
[ Проективные преобразования плоскости ]
Сложность: 4+
Классы: 9,10,11

Докажите, что точки, соответствующие комплексным числам a, b, c, лежат на одной прямой тогда и только тогда, когда число $ {\frac{a-b}{a-c}}$, называемое простым отношением трех комплексных чисел, вещественно.
б) Докажите, что точки, соответствующие комплексным числам a, b, c, d, лежат на одной окружности (или на одной прямой) тогда и только тогда, когда число $ {\frac{a-c}{a-d}}$ : $ {\frac{b-c}{b-d}}$, называемое двойным отношением четырех комплексных чисел, вещественно.
Прислать комментарий     Решение


Задача 102450

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Комплексные числа в геометрии ]
Сложность: 4
Классы: 8,9

Площадь треугольника равна 6$ \sqrt{6}$, периметр его равен 18, расстояние от центра вписанной окружности до одной из вершин равно $ {\frac{2\sqrt{42}}{3}}$. Найдите наименьшую сторону треугольника.

Прислать комментарий     Решение


Задача 58396

 [Неравенство Птолемея]
Темы:   [ Теорема Птолемея ]
[ Комплексные числа в геометрии ]
[ Инверсия помогает решить задачу ]
[ Шестиугольники ]
Сложность: 7-
Классы: 9,10,11

а) Докажите, что если A, B, C и D — произвольные точки плоскости, то AB . CD + BC . AD$ \ge$AC . BD (неравенство Птолемея).
б) Докажите, что если A1, A2, ...A6 — произвольные точки плоскости, то

\begin{multline*}
A_1A_4\cdot A_2A_5\cdot A_3A_6\le
A_1A_2\cdot A_3A_6\cdot A_...
...+A_2A_3\cdot A_4A_5\cdot A_1A_6+A_3A_4\cdot A_2A_5\cdot A_1A_6.
\end{multline*}


в) Докажите, что (нестрогое) неравенство Птолемея обращается в равенство тогда и только тогда, когда ABCD — (выпуклый) вписанный четырехугольник.
г) Докажите, что неравенство из задачи б) обращается в равенство тогда и только тогда, когда A1...A6 — вписанный шестиугольник.
Прислать комментарий     Решение

Задача 78264

Темы:   [ Векторы (прочее) ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
[ Комплексные числа в геометрии ]
Сложность: 3+
Классы: 10,11

Точки A и B движутся равномерно и с равными угловыми скоростями по окружностям O1 и O2 соответственно (по часовой стрелке). Доказать, что вершина C правильного треугольника ABC также движется равномерно по некоторой окружности.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .