Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 557]
|
|
|
Сложность: 3- Классы: 7,8,9
|
Существуют ли такие целые числа x, y и z, для которых выполняется равенство: (x – y)³ + (y – z)³ + (z – x)³ = 2011?
На наибольшей стороне AB треугольника ABC взяли такие точки P и Q, что AQ = AC, BP = BC.
Докажите, что центр описанной окружности треугольника PQC совпадает с центром вписанной окружности треугольника ABC.
|
|
|
Сложность: 3- Классы: 9,10,11
|
Верно ли, что в пространстве два угла с соответственно перпендикулярными сторонами либо равны, либо составляют в сумме 180°?
|
|
|
Сложность: 3- Классы: 9,10,11
|
В клетках квадратной таблицы 10×10 стоят ненулевые цифры. В каждой
строчке и в каждом столбце из всех стоящих там цифр произвольным образом составлено десятизначное число. Может ли оказаться так, что из двадцати получившихся чисел ровно одно не делится на 3?
|
|
|
Сложность: 3- Классы: 9,10,11
|
Найдите наибольшее значение выражения x²y – y²x, если 0 ≤ x ≤ 1 и 0 ≤ y ≤ 1.
Страница:
<< 19 20 21 22
23 24 25 >> [Всего задач: 557]