ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 557]      



Задача 66124

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7

Сумма двух сторон прямоугольника равна 7 см, а сумма трёх его сторон равна 9,5 см. Найдите периметр прямоугольника.

Прислать комментарий     Решение

Задача 66287

Тема:   [ Средние величины ]
Сложность: 3-
Классы: 7,8,9

Даны 10 чисел:  а1 < а2 < ... < а10.  Сравните среднее арифметическое этих чисел со средним арифметическим первых шести чисел.

Прислать комментарий     Решение

Задача 86499

Темы:   [ Системы алгебраических нелинейных уравнений ]
[ Симметрические системы. Инволютивные преобразования ]
[ Неопределено ]
Сложность: 3-
Классы: 8,9,10

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Прислать комментарий     Решение

Задача 86500

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанный угол равен половине центрального ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

В остроугольном треугольнике ABC угол B равен 60°, AM и CN – его высоты, а Q – середина стороны AC.
Докажите, что треугольник MNQ – равносторонний.

Прислать комментарий     Решение

Задача 86501

Темы:   [ Уравнения в целых числах ]
[ Произведения и факториалы ]
[ Перебор случаев ]
Сложность: 3-
Классы: 8,9

Найдите все натуральные m и n, для которых  m! + 12 = n².

Прислать комментарий     Решение

Страница: << 17 18 19 20 21 22 23 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .