|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Постройте треугольник ABC по медиане mc и биссектрисе lc, если Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD. Рассматривается шестиугольник, который является пересечением двух (не обязательно равных) правильных треугольников. Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40]
Решить в натуральных числах уравнение:
10 друзей послали друг другу праздничные открытки, так что каждый послал
пять открыток.
Три бегуна – X, Y и Z – участвуют в забеге. Z задержался на старте и выбежал последним, а Y выбежал вторым. Z во время забега менялся местами с другими участниками 6 раз, а X – 5 раз. Известно, что Y финишировал раньше X. В каком порядке они финишировали?
Найти число решений в натуральных числах уравнения [x/10] = [x/11] + 1.
Докажите, что при любом натуральном n
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 40] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|