ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Два квадрата расположены так, как показано на рисунке. Докажите, что площади заштрихованных четырёхугольников равны.

Вниз   Решение


В государстве 100 городов, и из каждого из них выходит 4 дороги. Сколько всего дорог в государстве?

ВверхВниз   Решение


Автор: Фольклор

Решить в целых числах уравнение  2n + 7 = x².

ВверхВниз   Решение


Из чисел x1, x2, x3, x4, x5 можно образовать десять попарных сумм; обозначим их через a1, a2, ..., a10. Доказать, что зная числа a1, a2, ..., a10 (но не зная, разумеется, суммой каких именно двух чисел является каждое из них), можно восстановить числа x1, x2, x3, x4, x5.

ВверхВниз   Решение


Автор: Фольклор

Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 97781  (#1)

Темы:   [ Индукция (прочее) ]
[ Неравенство Коши ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

а) Доказать, что для любых положительных чисел  x1, x2, ..., xk  (k > 3)  выполняется неравенство:

б) Доказать, что это неравенство ни для какого  k > 3  нельзя усилить, то есть доказать, что для каждого фиксированного k нельзя заменить двойку в правой части на большее число так, чтобы полученное неравенство было справедливо для любого набора из k положительных чисел.

Прислать комментарий     Решение

Задача 97782  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Геометрия на клетчатой бумаге ]
[ Шахматные доски и шахматные фигуры ]
Сложность: 4
Классы: 8,9,10,11

Автор: Анджанс А.

Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?

Прислать комментарий     Решение

Задача 97783  (#3)

Темы:   [ Принцип крайнего (прочее) ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Анджанс А.

Прислать комментарий     Решение


Задача 97784  (#4)

Темы:   [ Целочисленные и целозначные многочлены ]
[ Многочлены (прочее) ]
Сложность: 5
Классы: 9,10,11

Автор: Фольклор

Многочлен P(x) со старшим коэффициентом, равным 1, обладает тем свойством, что среди значений, принимаемых им при натуральных значениях аргумента, встречаются все числа вида 2m с натуральным m. Докажите, что этот многочлен – первой степени.

Прислать комментарий     Решение

Задача 97780  (#5)

Темы:   [ Арифметическая прогрессия ]
[ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Рассматривается последовательность  1, ½, ⅓, ¼, ⅕, ⅙, 1/7, ...  Существует ли арифметическая прогрессия
  а) длины 5;
  б) сколь угодно большой длины,
составленная из членов этой последовательности?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .