ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

У Васи есть камень (однородный, без внутренних полостей), имеющий форму выпуклого многогранника, у которого есть только треугольные и шестиугольные грани. Вася утверждает, что он разбил этот камень на две части так, что можно сложить из них куб (без внутренних полостей). Могут ли слова Васи быть правдой?

Вниз   Решение


Докажите, что можно найти более тысячи троек натуральных чисел a, b, c, для которых выполняется равенство a15 + b15 = c16.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 5]      



Задача 79336  (#1)

Темы:   [ Выпуклые многоугольники ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9

В каждой вершине выпуклого k-угольника находится охотник, вооруженный лазерным ружьем. Все охотники одновременно выстрелили в зайца, сидящего в точке O внутри этого k-угольника. В момент выстрела заяц пригибается, и все охотники погибают. Доказать, что нет другой точки, кроме O, обладающей указанным свойством.
Прислать комментарий     Решение


Задача 79337  (#2)

Темы:   [ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
[ Куб ]
Сложность: 3+
Классы: 8

Куб 3×3×3 составлен из 14 белых и 13 чёрных кубиков со стороной 1. Столбик – это три кубика, стоящих рядом вдоль одного направления: ширины, длины или высоты. Может ли быть так, что в каждом столбике
  а) нечётное количество белых кубиков?
  б) нечётное количество чёрных кубиков?

Прислать комментарий     Решение

Задача 79338  (#3)

Темы:   [ Арифметические действия. Числовые тождества ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

Докажите, что можно найти более тысячи троек натуральных чисел a, b, c, для которых выполняется равенство a15 + b15 = c16.
Прислать комментарий     Решение


Задача 79341  (#4)

Темы:   [ Турниры и турнирные таблицы ]
[ Средние величины ]
Сложность: 4
Классы: 9

В волейбольном турнире каждые две команды сыграли по одному матчу.
  а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
  б) Постройте пример такого турнира семи команд.
  в) Докажите, что если для любых трёх команд найдётся такая, которая выиграла у этих трёх, то число команд не меньше 15.

Прислать комментарий     Решение

Задача 79340  (#5)

Темы:   [ Выпуклые многоугольники ]
[ Объединение, пересечение и разность множеств ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
[ Оценка + пример ]
Сложность: 4+
Классы: 8,9,10

Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .