|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Туры:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52]
Какое наибольшее количество различных целых чисел можно выписать в ряд так, чтобы сумма каждых 11 подряд идущих чисел равнялась 100 или 101?
Можно ли в каждую клетку таблицы 40×41 записать по целому числу так, чтобы число в каждой клетке равнялось количеству тех соседних с ней по стороне клеток, в которых написано такое же число?
Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
На плоскости даны две параболы: $y = x^2$ и $y = x^2 - 1$. Пусть $U$ – множество всех точек плоскости, лежащих между параболами (включая точки на самих параболах). Существует ли отрезок длины более $10^6$, целиком содержащийся в $U$?
Даны целые числа $a_{1}, ..., a_{1000}$. По кругу записаны их квадраты $a_{1}^2, ..., a_{1000}^2$. Сумма каждых 41 подряд идущих квадратов на круге делится на $41^2$.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 52] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|