ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Назовём девятизначное число красивым, если все его цифры различны.
Докажите, что существует по крайней мере  а) 1000;  б) 2018 красивых чисел, каждое из которых делится на 37.

Вниз   Решение


Автор: Фольклор

Найти все целые решения уравнения  yk = x² + x  (k – натуральное число, большее 1).

ВверхВниз   Решение


Сколько существует натуральных чисел, меньших тысячи, которые не делятся ни на 5, ни на 7?

ВверхВниз   Решение


Постройте правильный десятиугольник.

ВверхВниз   Решение


Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 65555  (#1)

Темы:   [ Треугольники (прочее) ]
[ Рациональные и иррациональные числа ]
[ Замечательные точки и линии в треугольнике (прочее) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9,10,11

Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.

Прислать комментарий     Решение

Задача 65556  (#2)

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательные равные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

Вписанная окружность треугольника ABC касается сторон BC, CA и AB в точках A', B' и C'. Известно, что  AA' = BB' = CC'.
Обязательно ли треугольник ABC правильный?

Прислать комментарий     Решение

Задача 65557  (#3)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Какое наибольшее число коней можно расставить на шахматной доске так, чтобы каждый бил не более семи из остальных?

Прислать комментарий     Решение

Задача 65558  (#4)

Темы:   [ Средние величины ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

Прислать комментарий     Решение

Задача 65559  (#5)

Темы:   [ Вписанные и описанные окружности ]
[ Неравенство треугольника (прочее) ]
[ Подобие ]
Сложность: 4-
Классы: 8,9,10,11

В треугольнике ABC на стороне BC отмечена точка K. В треугольники ABK и ACK вписаны окружности, первая касается стороны BC в точке M, вторая – в точке N. Докажите, что  BM·CN > KM·KN.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .