ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Можно ли выбрать некоторые натуральные числа так, чтобы при любом натуральном значении n хотя бы одно из чисел n, n + 50 было выбрано и хотя бы одно из чисел n, n + 1987 не было выбрано?

Вниз   Решение


Паук сплёл паутину, и во все её 12 узелков попалось по мухе или комару. При этом каждое насекомое оказалось соединено отрезком паутины ровно с двумя комарами. Нарисуйте пример, как это могло быть (написав внутри узелков буквы М и К).

ВверхВниз   Решение


На пяти карточках записаны натуральные числа от 1 до 5. Леша и Дима взяли себе, не глядя, по две карточки, а оставшуюся карточку, также не глядя, спрятали. Изучив свои карточки, Леша сказал Диме: "Я знаю, что сумма чисел на твоих карточках чётна!"; и был прав. Какие числа записаны на Лешиных карточках?

ВверхВниз   Решение


Найдите геометрическое место середин отрезков с концами на двух данных параллельных прямых.

ВверхВниз   Решение


В прямоугольном треугольнике АВС проведена высота СН из вершины прямого угла. Из вершины В большего острого угла проведён отрезок BK так, что ∠CBK = ∠CАB (см. рис.). Докажите, что СН делит BK пополам.

ВверхВниз   Решение


На рисунке изображен график функции  y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 15]      



Задача 65169  (#9.1.1)

Тема:   [ Графики и ГМТ на координатной плоскости ]
Сложность: 2+
Классы: 8,9

На рисунке изображен график функции  y = (a² – 1)(x² – 1) + (a – 1)(x – 1). Найдите координаты точки А.

Прислать комментарий     Решение

Задача 65170  (#9.1.2)

Темы:   [ Четырехугольники (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Доказательство от противного ]
Сложность: 2+
Классы: 8,9,10,11

Существует ли выпуклый четырёхугольник, каждая диагональ которого делит его на два остроугольных треугольника?

Прислать комментарий     Решение

Задача 65421  (#9.1.3)

Темы:   [ Процессы и операции ]
[ Разные задачи на разрезания ]
Сложность: 3
Классы: 8,9,10,11

Петя разрезал прямоугольный лист бумаги по прямой на две части. Затем одну часть снова разрезал по прямой на две. Потом одну из получившихся частей опять разрезал на две части, и так далее, всего он резал бумагу сто раз. Потом Петя подсчитал суммарное количество вершин у всех получившихся многоугольников – получилось всего 302 вершины. Могло ли так быть?

Прислать комментарий     Решение

Задача 65422  (#9.2.1)

Тема:   [ Системы алгебраических нелинейных уравнений ]
Сложность: 3
Классы: 9,10,11

Решите систему уравнений:
  1/x = y + z,
  1/y = z + x,
  1/z = x + y.

Прислать комментарий     Решение

Задача 65423  (#9.2.2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 9,10,11

На сторонах АВ, ВС и СА равностороннего треугольника АВС выбраны точки D, E и F соответственно так, что  DE || АC,  DF || BС.
Найдите угол между прямыми и BF.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .