|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй. Имеется множество билетов с номерами от 1 до 30 (номера могут повторяться). Каждый из учеников вытянул один билет. Учитель может произвести следующую операцию: прочитать список из нескольких (возможно – одного) номеров и попросить их владельцев поднять руки. Сколько раз он должен проделать такую операцию, чтобы узнать номер каждого ученика? (Учеников не обязательно 30.) Последовательность чисел {xn} задана условиями:
x1 Докажите, что
последовательность {xn} монотонна и ограничена. Найдите ее
предел.
|
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44]
Докажите, что для чисел {xn} из задачи 61297 можно в явном виде указать разложения в цепные дроби: xn+1 = [1;
Найти все действительные решения системы уравнений
Решите систему
x1 Докажите, что
последовательность {xn} монотонна и ограничена. Найдите ее
предел.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 44] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|