|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На столе лежат две кучки камней: в первой кучке 10 камней, а во второй - 15. За ход разрешается разделить любую кучку на две меньшие. Проигрывает тот, кто не сможет делать ход. Может ли выиграть второй игрок? Можно ли из кубиков размером 1×1×1 склеить многогранник, площадь поверхности которого равна 2015? (Кубики приклеиваются так, что склеиваемые грани полностью примыкают друг к другу.) Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы Предпоследняя цифра квадрата натурального числа – нечётная. Докажите, что его последняя цифра – 6. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 99]
Сформулируйте и докажите признаки делимости на 2n и 5n.
Последняя цифра квадрата натурального числа равна 6. Докажите, что его предпоследняя цифра нечётна.
Предпоследняя цифра квадрата натурального числа – нечётная. Докажите, что его последняя цифра – 6.
Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.
Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 99] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|