|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Известно, что в кодовом замке исправны только кнопки с номерами 1, 2, 3, а код этого замка трёхзначен и не содержит других цифр. Написать последовательность цифр наименьшей длины, наверняка открывающую этот замок (замок открывается, как только подряд и в правильном порядке нажаты все три цифры его кода). В выпуклом пятиугольнике ABCDE: ∠A = ∠C = 90°, AB = AE, BC = CD, AC = 1. Найдите площадь пятиугольника. |
Страница: 1 2 >> [Всего задач: 6]
Верно ли, что центр вписанной окружности треугольника лежит внутри треугольника, образованного средними линиями данного?
В выпуклом пятиугольнике ABCDE: ∠A = ∠C = 90°, AB = AE, BC = CD, AC = 1. Найдите площадь пятиугольника.
H – точка пересечения высот AA' и BB' остроугольного треугольника ABC. Прямая, перпендикулярная AB, пересекает эти высоты в точках D и E, а сторону AB – в точке P. Докажите, что ортоцентр треугольника DEH лежит на отрезке CP.
Внутри выпуклого многогранника выбрана точка P и несколько прямых l1, ..., ln, проходящих через P и не лежащих в одной плоскости. Каждой грани многогранника поставим в соответствие ту из прямых l1, ..., ln, которая образует наибольший угол с плоскостью этой грани (если таких прямых несколько, выберем любую из них). Докажите, что найдётся грань, которая пересекается с соответствующей ей прямой.
Внутри окружности с центром O отмечены точки A и B так, что OA = OB.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|