ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

За круглым столом сидят мальчики и девочки. Докажите, что количество пар соседей разного пола чётно.

Вниз   Решение


К каждому члену некоторой конечной последовательности подряд идущих натуральных чисел приписали справа по две цифры и получили последовательность квадратов подряд идущих натуральных чисел. Какое наибольшее число членов могла иметь эта последовательность?

ВверхВниз   Решение


Найти все равнобочные трапеции, которые разбиваются диагональю на два равнобедренных треугольника.

ВверхВниз   Решение


Автор: Тригуб А.

В треугольнике $ABC$ вневписанная окружность, лежащая напротив угла $C$, касается стороны $AB$ в точке $T$. Пусть $J$ – центр вневписанной окружности, лежащей напротив угла $A$, a $M$ – середина $AJ$. Докажите, что $MT=MC$.

ВверхВниз   Решение


Докажите неравенство для положительных значений переменных:
+ .

ВверхВниз   Решение


В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Могут ли они вращаться?

ВверхВниз   Решение


В круговых автогонках участвовали четыре гонщика. Их машины стартовали одновременно из одной точки и двигались с постоянными скоростями. Известно, что после начала гонок для каждых трёх машин нашёлся момент, когда они встретились. Докажите, что после начала гонок найдётся момент, когда встретятся все четыре машины. (Гонки считаем бесконечно долгими по времени.)

ВверхВниз   Решение


B трапеции ABCD  AB = BC = CDCH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.

Вверх   Решение

Задачи

Страница: 1 2 3 >> [Всего задач: 12]      



Задача 116154

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки равенства прямоугольных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Поворот помогает решить задачу ]
Сложность: 2
Классы: 8,9

Биссектриса угла B и биссектриса внешнего угла D прямоугольника ABCD пересекают сторону AD и прямую AB в точках M и K соответственно.
Докажите, что отрезок MK равен и перпендикулярен диагонали прямоугольника.

Прислать комментарий     Решение

Задача 116155

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 2+
Классы: 8,9

B равнобедренном треугольнике ABС на боковой стороне отмечена точка M так, что отрезок равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.

Прислать комментарий     Решение

Задача 116156

Темы:   [ Построения одной линейкой ]
[ Свойства медиан. Центр тяжести треугольника. ]
[ Средняя линия треугольника ]
Сложность: 3
Классы: 8,9

Автор: Фольклор

Из листа бумаги в клетку вырезали квадрат 2×2.
Используя только линейку без делений и не выходя за пределы квадрата, разделите диагональ квадрата на 6 равных частей.

Прислать комментарий     Решение

Задача 116161

Темы:   [ Расстояние между скрещивающимися прямыми ]
[ Цилиндр ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 10,11

Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
Bерно ли, что a перпендикулярна α?

Прислать комментарий     Решение

Задача 116157

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средняя линия трапеции ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Средняя линия треугольника ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 8,9

B трапеции ABCD  AB = BC = CDCH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.

Прислать комментарий     Решение

Страница: 1 2 3 >> [Всего задач: 12]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .