|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Треугольник ABC правильный. Найдите геометрическое место таких точек X, что AX2 = BX2 + CX2. б) Докажите, что для точек указанного ГМТ подерный треугольник относительно треугольника ABC прямоугольный. Существуют ли различные взаимно простые в совокупности натуральные числа a, b и c, большие 1 и такие, что 2a + 1 делится на b, 2b + 1 делится на c, а 2c + 1 делится на a? |
Страница: 1 2 >> [Всего задач: 8]
Миша решил уравнение x² + ax + b = 0 и сообщил Диме набор из четырёх чисел – два корня и два коэффициента этого уравнения (но не сказал, какие именно из них корни, а какие – коэффициенты). Сможет ли Дима узнать, какое уравнение решал Миша, если все числа набора оказались различными?
Существуют ли различные взаимно простые в совокупности натуральные числа a, b и c, большие 1 и такие, что 2a + 1 делится на b, 2b + 1 делится на c, а 2c + 1 делится на a?
Окружности S1 и S2 пересекаются в точках M и N. Через точку A окружности S1 проведены прямые AM и AN, пересекающие окружность S2 в точках B и C, а через точку D окружности S2 – прямые DM и DN, пересекающие S1 в точках E и F, причём точки A, E, F лежат по одну сторону от прямой MN, а D, B, C – по другую (см. рис.). Докажите, что если AB = DE, то точки A, F, C и D лежат на одной окружности, положение центра которой не зависит от выбора точек A и D.
В таблице 99×101 расставлены кубы натуральных чисел, как показано на рисунке.
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|