ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Решите систему уравнений:
    1 – x1x2 = 0,
    1 – x2x3 = 0,
    ...
    1 – x2000x2001 = 0,
    1 – x2001x1 = 0.

Вниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

ВверхВниз   Решение


Два шара касаются плоскости α в точках A и B и расположены по разные стороны от этой плоскости. Расстояние между центрами этих шаров равно 10. Третий шар внешним образом касается двух данных шаров, а его центр O лежит в плоскости α . Известно, что AO = OB = 2 , AB = 8 . Найдите радиус третьего шара.

ВверхВниз   Решение


Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

ВверхВниз   Решение


Выполните построения с помощью линейки с двумя параллельными краями (двусторонней линейки) без циркуля.
а) Постройте биссектрису данного угла AOB.
б) Дан острый угол AOB. Постройте угол BOC, биссектрисой которого является луч OA.

ВверхВниз   Решение


Проведите через данную точку P, лежащую внутри данной окружности, хорду так, чтобы разность длин отрезков, на которые P делит хорду, имела данную величину a.

ВверхВниз   Решение


Внутри выпуклого многоугольника расположены две точки.
Докажите, что найдётся четырёхугольник с вершинами в вершинах этого многоугольника, содержащий эти две точки.

ВверхВниз   Решение


Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110046  (#00.4.9.8)

Темы:   [ Таблицы и турниры (прочее) ]
[ Раскраски ]
[ Симметрия и инволютивные преобразования ]
[ Уравнения в целых числах ]
Сложность: 4
Классы: 8,9,10

Клетки таблицы 200×200 окрашены в чёрный и белый цвета так, что чёрных клеток на 404 больше, чем белых.
Докажите, что найдётся квадрат 2×2, в котором число белых клеток нечётно.

Прислать комментарий     Решение

Задача 110031  (#00.4.10.1)

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10

Рассматриваются 2000 чисел: 11, 101, 1001, ... . Докажите, что среди этих чисел не менее 99% составных.

Прислать комментарий     Решение

Задача 110032  (#00.4.10.2)

Темы:   [ Взвешивания ]
[ Оценка + пример ]
Сложность: 3+
Классы: 7,8,9

Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету?
Прислать комментарий     Решение


Задача 108247  (#00.4.10.3)

Темы:   [ Вспомогательная окружность ]
[ Признаки и свойства параллелограмма ]
[ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные и описанные окружности ]
[ Вписанные четырехугольники (прочее) ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Дан параллелограмм ABCD с углом A, равным 60°. Точка O – центр описанной окружности треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение  AO : OK.

Прислать комментарий     Решение

Задача 110034  (#00.4.10.4)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Уравнения в целых числах ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Замятин В.

При каком наименьшем n квадрат n×n можно разрезать на квадраты 40×40 и 49×49 так, чтобы квадраты обоих видов присутствовали?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .