ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Четырёхугольник с длинами сторон 1, 1, 1 и 2 имеет две параллельные стороны и разбит на четыре одинаковые фигуры (см. рисунок). В результате верхняя сторона разделилась на четыре отрезка. Найдите отношение длины большего отрезка к меньшему.

Вниз   Решение


Два прямоугольника положены на плоскость так, что их границы имеют восемь точек пересечения. Эти точки соединены через одну. Доказать, что площадь полученного четырёхугольника не изменится при поступательном перемещении одного из прямоугольников.

ВверхВниз   Решение


Сколько четырёхзначных чисел можно составить, используя цифры 1, 2, 3, 4 и 5, если:
  а) никакая цифра не повторяется более одного раза;
  б) повторения цифр допустимы;
  в) числа должны быть нечётными и повторений цифр быть не должно?

ВверхВниз   Решение


По кругу расставлены красные и синие числа. Каждое красное число равно сумме соседних чисел, а каждое синее– полусумме соседних чисел. Докажите, что сумма красных чисел равна нулю.

ВверхВниз   Решение


Точки A, B, C и D таковы, что для любой точки M числа ($ \overrightarrow{MA}$,$ \overrightarrow{MB}$) и  ($ \overrightarrow{MC}$,$ \overrightarrow{MD}$) различны. Докажите, что $ \overrightarrow{AC}$ = $ \overrightarrow{DB}$.

ВверхВниз   Решение


В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



Задача 109572  (#94.5.9.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Покрытия ]
[ Индукция в геометрии ]
Сложность: 4+
Классы: 8,9,10

Автор: Перлин А.

Плоскость разбита двумя семействами параллельных прямых на единичные квадратики. Назовем каемкой квадрата n ×n, состоящего из квадратиков разбиения, объединение тех квадратиков, которые хотя бы одной из своих сторон примыкают изнутри к его границе. Докажите, что существует ровно один способ покрытия квадрата 100×100 , состоящего из квадратиков разбиения, неперекрывающимися каемками пятидесяти квадратов. (Каемки могут и не содержаться в квадрате 100× 100 .)
Прислать комментарий     Решение


Задача 109558  (#94.5.10.1)

Темы:   [ Уравнения с модулями ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 4-
Классы: 8,9,10

Даны три приведённых квадратных трехчлена:  P1(x), P2(x) и P3(x). Докажите, что уравнение  |P1(x)| + |P2(x)| = |P3(x)|  имеет не более восьми корней.

Прислать комментарий     Решение

Задача 109567  (#94.5.10.2)

Темы:   [ Выигрышные и проигрышные позиции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10

Автор: Кохась М.

На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?

Прислать комментарий     Решение

Задача 108204  (#94.5.10.3)

Темы:   [ Неравенства с медианами ]
[ Длины сторон, высот, медиан и биссектрис ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вписанные и описанные окружности ]
Сложность: 5-
Классы: 9,10,11

Пусть a , b и c – стороны треугольника, ma , mb и mc – медианы, проведённые к этим сторонам, D – диаметр окружности, описанной около треугольника. Докажите, что

+ + 6D.

Прислать комментарий     Решение

Задача 109560  (#94.5.10.4)

Темы:   [ Раскраски ]
[ Правильные многоугольники ]
[ Задачи с ограничениями ]
Сложность: 4+
Классы: 8,9,10,11

В правильном (6n+1)-угольнике K вершин покрашено в красный цвет, а остальные – в синий.
Докажите, что количество равнобедренных треугольников с одноцветными вершинами не зависит от способа раскраски.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 48]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .