|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Найдите все пары натуральных чисел (а, b), для которых выполняется равенство НОК(а, b) – НОД(а, b) = ab/5.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|