|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Каждую сторону выпуклого четырёхугольника продолжили в обе стороны и на всех восьми продолжениях отложили равные между собой отрезки. Оказалось, что получившиеся восемь точек – внешние концы построенных отрезков – различны и лежат на одной окружности. Докажите, что исходный четырёхугольник – квадрат. Проведите через данную точку P, лежащую внутри данной окружности, хорду так, чтобы разность длин отрезков, на которые P делит хорду, имела данную величину a. Внутри выпуклого многоугольника расположены две точки. Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69]
Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?
Функция f(x) определена на положительной полуоси и принимает только положительные значения. Известно, что f(1) + f(2) = 10 и
На шахматной доске расставили n белых и n чёрных ладей так, чтобы ладьи разного цвета не били друг друга. Найдите наибольшее возможное значение n.
На сторонах АВ, ВС и СА треугольника АВС отмечены точки С1, А1 и В1 соответственно так, что ВС1 = С1А1 = А1В1 = В1С.
Найдите все пары натуральных чисел (а, b), для которых выполняется равенство НОК(а, b) – НОД(а, b) = ab/5.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 69] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|