ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Грибалко А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 67077

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 7,8,9,10

Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?
Прислать комментарий     Решение


Задача 67146

Тема:   [ Взвешивания ]
Сложность: 4
Классы: 7,8,9,10

У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
Прислать комментарий     Решение


Задача 67149

Темы:   [ Подсчет двумя способами ]
[ Логика и теория множеств (прочее) ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

На прямой отмечено 2022 точки так, что каждые две соседние точки расположены на одинаковом расстоянии. Половина точек покрашена в красный цвет, а другая половина – в синий. Может ли сумма длин всевозможных отрезков, у которых левый конец красный, а правый – синий, равняться сумме длин всех отрезков, у которых левый конец синий, а правый – красный? (Концы рассматриваемых отрезков – не обязательно соседние отмеченные точки.)
Прислать комментарий     Решение


Задача 98253

Темы:   [ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Кубические многочлены ]
Сложность: 4
Классы: 8,9

а) Существуют ли такие натуральные числа a, b, c, что из двух чисел  a/b + b/c + c/a  и  b/a + c/b + a/c  ровно одно – целое?

б) Докажите, что если они оба целые, то  a = b = c.

Прислать комментарий     Решение

Задача 107788

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Кубические многочлены ]
Сложность: 4
Классы: 9,10,11

Целые числа a, b и c таковы, что числа  a/b + b/c + c/a  и  a/с + с/b + b/a  тоже целые. Докажите, что  |a| = |b| = |c|.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .