Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 45]
|
|
Сложность: 4 Классы: 7,8,9,10
|
Для турнира изготовили 7 золотых, 7 серебряных и 7 бронзовых медалей. Все медали из одного металла должны весить одинаково, а из разных должны иметь различные массы. Но одна из всех медалей оказалась нестандартной – имела неправильную массу. При этом нестандартная золотая медаль может весить только меньше стандартной золотой, бронзовая – только больше стандартной бронзовой, а серебряная может отличаться по весу от стандартной серебряной в любую сторону. Можно ли за три взвешивания на чашечных весах без гирь найти нестандартную медаль?
|
|
Сложность: 4 Классы: 7,8,9,10
|
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
|
|
Сложность: 4 Классы: 8,9,10,11
|
На прямой отмечено 2022 точки так, что каждые две соседние точки расположены на одинаковом расстоянии. Половина точек покрашена в красный цвет, а другая половина – в синий. Может ли сумма длин всевозможных отрезков, у которых левый конец красный, а правый – синий, равняться сумме длин всех отрезков, у которых левый конец синий, а правый – красный? (Концы рассматриваемых отрезков – не обязательно соседние отмеченные точки.)
а) Существуют ли такие натуральные числа a, b, c, что из двух чисел a/b + b/c + c/a и b/a + c/b + a/c ровно одно – целое?
б) Докажите, что если они оба целые, то a = b = c.
|
|
Сложность: 4 Классы: 9,10,11
|
Целые числа a, b и c таковы, что числа a/b + b/c + c/a и a/с + с/b + b/a тоже целые. Докажите, что |a| = |b| = |c|.
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 45]