ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Грибалко А.В.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 57]      



Задача 67479

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Симметрия помогает решить задачу ]
[ Инварианты ]
Сложность: 3+
Классы: 7,8,9,10,11

Набор состоит из одинаковых трёхклеточных уголков, у которых центральные клетки испачканы краской. Прямоугольную доску покрыли в один слой уголками, не выходящими за пределы доски, а затем убрали уголки. Испачканные клетки оставили на доске следы. Всегда ли по этим следам можно узнать, как именно лежали уголки?
Прислать комментарий     Решение


Задача 116223

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 10

У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет?

Прислать комментарий     Решение

Задача 64375

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 6,7

В левом нижнем углу клетчатой доски n×n стоит конь. Известно, что наименьшее число ходов, за которое конь может дойти до правого верхнего угла, равно наименьшему числу ходов, за которое он может дойти до правого нижнего угла. Найдите n.

Прислать комментарий     Решение

Задача 66027

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
Сложность: 4-
Классы: 9,10,11

Выпуклый многоугольник разрезан непересекающимися диагоналями на равнобедренные треугольники.
Докажите, что в этом многоугольнике найдутся две равные стороны.

Прислать комментарий     Решение

Задача 66332

Темы:   [ Связность. Связные множества ]
[ Инварианты ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10,11

В левой нижней клетке доски 100×100 стоит фишка. Чередуя горизонтальные и вертикальные ходы в соседнюю по стороне клетку (первый ход горизонтальный), она дошла сначала до левой верхней клетки, а потом до правой верхней. Докажите, что найдутся две такие клетки $A$ и $B$, что фишка не менее двух раз делала ход из $A$
в $B$.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .