Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 57]
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет.
Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Султан собрал 300 придворных мудрецов и предложил им испытание. Имеются колпаки 25 различных цветов, заранее известных мудрецам. Султан сообщил, что на каждого из мудрецов наденут один из этих колпаков, причём если для каждого цвета написать количество надетых колпаков, то все числа будут различны. Каждый мудрец будет видеть колпаки остальных мудрецов, а свой колпак нет. Затем все мудрецы одновременно огласят предполагаемый цвет своего колпака. Могут ли мудрецы заранее договориться действовать так, чтобы гарантированно хотя бы 150 из них назвали цвет верно?
|
|
|
Сложность: 4- Классы: 10,11
|
На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Барон Мюнхгаузен рассказывал, что у него есть карта страны Оз с пятью
городами. Каждые два города соединены дорогой, не проходящей через другие города. Каждая дорога пересекает на карте не более одной другой дороги (и не более одного раза). Дороги обозначены жёлтым или красным (по цвету кирпича, которым вымощены), и при обходе вокруг каждого города (по периметру) цвета выходящих из него дорог чередуются. Могут ли слова барона быть правдой?
|
|
|
Сложность: 4 Классы: 7,8,9,10
|
В клетках квадратной таблицы n × n, где n > 1, требуется расставить различные целые числа от 1 до n2 так,
чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие
одинаковые остатки при делении на n, – в разных строках
и в разных столбцах. При каких n это возможно?
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 57]