Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написаны $1000$ последовательных целых чисел. За ход можно разбить написанные числа на пары произвольным образом и каждую пару чисел заменить на их сумму и разность (не обязательно вычитать из большего меньшее; все замены происходят одновременно). Докажите, что на доске больше никогда не появятся $1000$ последовательных целых чисел.
|
|
Сложность: 4 Классы: 9,10,11
|
На доске написаны $2n$ последовательных целых чисел. За ход можно
разбить написанные числа на пары произвольным образом и каждую пару
чисел заменить на сумму и разность чисел этой пары (не обязательно
вычитать из большего числа меньшее; все замены происходят
одновременно). Докажите, что на доске больше никогда не появятся $2n$
последовательных чисел.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В каждой вершине выпуклого многогранника сходятся три грани. Каждая грань покрашена в красный, жёлтый или синий цвет. Докажите, что число вершин, в которых сходятся грани трёх разных цветов, чётно.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Директор зоопарка приобрёл восемь слонов с номерами 1, 2, ..., 8. Какие у них были массы, он забыл, но запомнил, что масса каждого слона, начиная с третьего, равнялась сумме масс двух предыдущих. Вдруг до директора дошёл слух, что один слон похудел. Как ему за два взвешивания на чашечных весах без гирь найти этого слона или убедиться, что это всего лишь слух? (Ему известно, что ни один слон не потолстел, а похудеть мог максимум один.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
По кругу лежит 101 монета, каждая весит 10 г или 11 г. Докажите, что найдётся монета, для которой суммарная масса $k$ монет слева от неё равна суммарной массе $k$ монет справа от неё, если
а) k=50;
б) k=49.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 45]