ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Толпыго А.К.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 70]      



Задача 67073

Тема:   [ Десятичная система счисления ]
Сложность: 4-
Классы: 7,8,9

Для каждого из девяти натуральных чисел $n, 2n, 3n, ..., 9n$ выписали на доску первую слева цифру в его десятичной записи. При этом $n$ выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?

Прислать комментарий     Решение

Задача 73592

Темы:   [ Количество и сумма делителей числа ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4-
Классы: 8,9,10

a) Найдите число k, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и k).
б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.

Прислать комментарий     Решение

Задача 73594

Темы:   [ Взвешивания ]
[ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 7,8,9

При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?

Прислать комментарий     Решение

Задача 98038

Темы:   [ Арифметическая прогрессия ]
[ Суммы числовых последовательностей и ряды разностей ]
[ НОД и НОК. Взаимная простота ]
[ Ряды с неотрицательными членами ]
Сложность: 4-
Классы: 9,10

Натуральный ряд представлен в виде объединения некоторого множества попарно непересекающихся целочисленных бесконечных арифметических прогрессий с положительными разностями  d1, d2, d3, ... .  Может ли случиться, что при этом сумма   1/d1 + 1/d2 + ... + 1/dk   не превышает 0,9? Рассмотрите случаи:
  а) общее число прогрессий конечно;
  б) прогрессий бесконечное число (в этом случае условие нужно понимать в том смысле, что сумма любого конечного числа слагаемых из бесконечной суммы не превышает 0,9).

Прислать комментарий     Решение

Задача 98110

Темы:   [ Многоугольники (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 4-
Классы: 8,9

Дан выпуклый восьмиугольник ABCDEFGH, у которого все внутренние углы равны между собой, а стороны равны через одну – AB = CD = EF = GH,
BC = DE = FG = HA  (будем называть такой восьмиугольник полуправильным). Проводим диагонали AD, BE, CF, DG, EH, FA, GB и HC. Среди частей, на которые эти диагонали разбивают внутреннюю область восьмиугольника, рассмотрим ту, которая содержит его центр. Если эта часть – восьмиугольник, он снова является полуправильным (это очевидно); в этом случае в нём проводим аналогичные диагонали, и т. д. Если на каком-то шагу центральная фигура не является восьмиугольником, процесс заканчивается. Докажите, что если этот процесс бесконечный, то исходный восьмиугольник – правильный.

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .