ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Толпыго А.К.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 70]      



Задача 116716

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Симметричная стратегия ]
Сложность: 4-
Классы: 10,11

Белая ладья стоит на поле b2 шахматной доски 8×8, а чёрная – на поле c4. Игроки ходят по очереди, каждый – своей ладьей, начинают белые. Запрещается ставить свою ладью под бой другой ладьи, а также на поле, где уже побывала какая-нибудь ладья. Тот, кто не может сделать ход, проигрывает. Кто из игроков может обеспечить себе победу, как бы ни играл другой? (За ход ладья сдвигается по горизонтали или вертикали на любое число клеток, и считается, что она побывала только в начальной и конечной клетках этого хода.)

Прислать комментарий     Решение

Задача 55590

Темы:   [ Симметрия помогает решить задачу ]
[ Построение треугольников по различным точкам ]
[ Углы между биссектрисами ]
[ Построение треугольников по различным элементам ]
Сложность: 4
Классы: 8,9

С помощью циркуля и линейки постройте треугольник, если дана одна его вершина и три прямых, на которых лежат его биссектрисы.
Прислать комментарий     Решение


Задача 65395

Темы:   [ Теория игр (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Играют двое. У первого 1000 чётных карточек (2, 4, ..., 2000), у второго – 1001 нечётная (1, 3, ... , 2001). Ходят по очереди, начинает первый. Ход состоит в следующем: игрок, чья очередь ходить, выкладывает одну из своих карточек, а другой, посмотрев на неё, выкладывает одну из своих карточек; тот, у кого число на карточке больше, записывает себе одно очко, а обе выложенные карточки выбрасываются. Всего получается 1000 ходов (одна карточка второго не используется). Какое наибольшее число очков может гарантировать себе каждый из игроков (как бы ни играл его соперник)?

Прислать комментарий     Решение

Задача 65582

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Многочлен n-й степени имеет не более n корней ]
[ Индукция (прочее) ]
[ Тригонометрические уравнения ]
Сложность: 4
Классы: 10,11

Существует ли такой квадратный трёхчлен f(x), что для любого натурального n уравнение  f(f(...f(x))) = 0  (n букв "f") имеет ровно 2n различных действительных корней?

Прислать комментарий     Решение

Задача 66344

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10,11

Кусок сыра надо разрезать на части с соблюдением таких правил:
    вначале режем сыр на два куска, затем один из них режем на два куска, затем один из трёх кусков опять режем на два куска, и т.д.;
    после каждого разрезания части могут быть разными по весу, но отношение веса каждой части к весу любой другой должно быть строго больше заданного числа $R$.
  а) Докажите, что при  $R$ = 0,5  можно резать сыр так, что процесс никогда не остановится (после любого числа разрезаний можно будет отрезать ещё один кусок).
  б) Докажите, что если  $R$ > 0,5,  то процесс резки когда-нибудь остановится.
  в) На какое наибольшее число кусков можно разрезать сыр, если  $R$ = 0,6?

Прислать комментарий     Решение

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .