Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 70]
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Имеется натуральное 1001-значное число $A$. 1001-значное число $Z$ – то же число $A$, записанное от конца к началу (например, для четырёхзначных чисел это могли быть 7432 и 2347). Известно, что $A > Z$. При каком $A$ частное $A/Z$ будет наименьшим (но строго больше 1)?
|
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Существует ли число, которое может быть представлено в виде $\frac1n + \frac1m$, где $m$ и $n$ натуральные, не менее чем ста способами? Ответ объясните.
|
|
|
Сложность: 4 Классы: 10,11
|
Хозяин обещает работнику платить в среднем
рублей в день. Для этого каждый день он платит 1 или 2 рубля с таким расчётом, чтобы для любого натурального n выплаченная за первые n дней сумма была натуральным числом, наиболее близким к
Вот величины первых пяти выплат: 1, 2, 1, 2, 1. Докажите, что последовательность выплат непериодическая.
|
|
|
Сложность: 4 Классы: 8,9,10
|
Доказать, что если натуральное число k делится на 10101010101, то в его десятичной записи по крайней мере шесть цифр отличны от нуля.
|
|
|
Сложность: 4 Классы: 10,11
|
В пространстве имеются 30 ненулевых векторов. Доказать, что среди них
найдутся два, угол между которыми меньше 45°.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 70]