ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Анджанс А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



Задача 97807

Тема:   [ Полуинварианты ]
Сложность: 4
Классы: 8,9

Автор: Анджанс А.

Несколько ребят стоят по кругу. У каждого есть некоторое количество конфет. Сначала у каждого чётное количество конфет. По команде каждый передает половину своих конфет стоящему справа. Если после этого у кого-нибудь оказалось нечётное количество конфет, то ему извне добавляется одна конфета. Это повторяется много раз. Доказать, что настанет время, когда у всех будет поровну конфет.

Прислать комментарий     Решение

Задача 97817

Темы:   [ Ограниченность, монотонность ]
[ Последовательности (прочее) ]
Сложность: 4
Классы: 9,10

Автор: Анджанс А.

a1, a2, a3, ...  – возрастающая последовательность натуральных чисел. Известно, что  aak = 3k  для любого k.
Найти   а)  a100;   б)  a1983.

Прислать комментарий     Решение

Задача 97828

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Индукция (прочее) ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Докажите, что существует бесконечное число пар таких соседних натуральных чисел, что разложение каждого из них содержит любой простой сомножитель не менее чем во второй степени. Примеры таких пар чисел:  (8, 9),  (288, 289).

Прислать комментарий     Решение

Задача 97884

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Рекуррентные соотношения (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Последовательность чисел  x1, x2, ...  такова, что  x1 = ½  и     для всякого натурального k.

Найдите целую часть суммы  

Прислать комментарий     Решение

Задача 97919

Темы:   [ Числовые таблицы и их свойства ]
[ Правило произведения ]
[ Доказательство от противного ]
[ Принцип Дирихле (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9,10

Автор: Анджанс А.

Клетки шахматной доски 8×8 как-то занумерованы числами от 1 до 32, причём каждое число использовано дважды. Докажите, что можно так выбрать 32 клетки, занумерованные разными числами, что на каждой вертикали и на каждой горизонтали найдётся хотя бы по одной выбранной клетке.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .