Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 39]
|
|
Сложность: 4- Классы: 10,11
|
Можно ли разрезать плоскость на многоугольники, каждый из которых переходит
в себя при повороте на 360°/7 вокруг некоторой точки и все стороны которых больше 1 см?
|
|
Сложность: 4- Классы: 10,11
|
Даны три треугольника: A1A2A3, B1B2B3,
C1C2C3. Известно, что их центры тяжести (точки пересечения медиан) лежат на одной прямой, а никакие три из девяти вершин этих треугольников не лежат на одной прямой. Рассматриваются 27 треугольников вида AiBjCk, где i, j, k независимо пробегают значения 1, 2, 3. Докажите, что эти 27 треугольников можно разбить на две группы так, что сумма площадей треугольников первой группы будет равна сумме площадей треугольников второй группы.
|
|
Сложность: 4 Классы: 9,10,11
|
Дан выпуклый четырёхугольник ABCD. Каждая его сторона разбита на k равных частей. Точки деления, принадлежащие стороне AB, соединены прямыми с точками деления, принадлежащими стороне CD, так что первая, считая от A, точка деления соединена с первой точкой деления, считая от D, вторая, считая от A, – со второй, считая от D, и т. д. (первая серия прямых), а точки деления, принадлежащие стороне BC, аналогичным образом соединены с точками деления, принадлежащими стороне DA (вторая серия прямых). Образовалось k² маленьких четырёхугольников. Из них выбрано k четырёхугольников таким образом, что каждые два выбранных четырёхугольника разделены хотя бы одной прямой первой серии и хотя бы одной прямой второй серии.
Доказать, что сумма площадей выбранных четырёхугольников равна 1/k SABCD.
|
|
Сложность: 4 Классы: 8,9,10
|
В квадрате со стороной 1 проведено конечное количество отрезков, параллельных его сторонам. Отрезки могут пересекать друг друга. Сумма длин проведенных отрезков равна 18. Докажите, что среди частей, на которые разбивается квадрат этими отрезками, найдётся такая, площадь которой не меньше 0,01.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 39]