ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шарыгин И.Ф.

Игорь Фёдорович Шарыгин (1937-2004) - математик и педагог, специалист по элементарной геометрии, популяризатор науки, автор учебников и пособий для школьников. Профессор МГУ, член редколлегии журнала "Квант". Член исполкома Международной комиссии по математическому образованию(1999-2002), заведующий лабораторией "Геометрия" МЦНМО.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



Задача 116190

Темы:   [ Теорема синусов ]
[ Экстремальные точки треугольника ]
Сложность: 2+
Классы: 10,11

Дан остроугольный треугольник ABC. Прямая, параллельная BC, пересекает стороны AB и AC в точках M и P соответственно. При каком расположении точек M и P радиус окружности, описанной около треугольника BMP, будет наименьшим?

Прислать комментарий     Решение

Задача 103735

Темы:   [ ГМТ с ненулевой площадью ]
[ Вписанный угол, опирающийся на диаметр ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Изобразите множество середин всех отрезков, концы которых лежат а) на данной полуокружности; б) на диагоналях данного квадрата.

Прислать комментарий     Решение


Задача 108062

Темы:   [ Ортоцентр и ортотреугольник ]
[ Ортогональная (прямоугольная) проекция ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

Сторона AB треугольника ABC равна c. На стороне AB взята такая точка M, что  ∠CMA = φ.
Найдите расстояние между ортоцентрами треугольников AMC и BMC.

Прислать комментарий     Решение

Задача 116884

Темы:   [ Биссектриса угла ]
[ Угол между касательной и хордой ]
[ Медиана, проведенная к гипотенузе ]
[ Окружность Аполлония ]
Сложность: 3
Классы: 10,11

Через вершину А остроугольного треугольника АВС проведены касательная АК к его описанной окружности, а также биссектрисы АN и AM внутреннего и внешнего углов при вершине А (точки М, K и N лежат на прямой ВС). Докажите, что  MK = KN.

Прислать комментарий     Решение

Задача 97891

Темы:   [ Вписанный угол равен половине центрального ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC проведены высота AH и биссектриса BE. Известно, что угол BEA равен 45°. Докажите, что угол EHC равен 45°.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 44]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .