ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Выпуски:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 57]      



Задача 55723  (#М81)

Темы:   [ Поворот помогает решить задачу ]
[ Поворот на 90° ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4+
Классы: 8,9,10

Внутри квадрата A1A2A3A4 взята точка P. Из вершины A1 опущен перпендикуляр на A2P, из A2 — перпендикуляр на A3P, из A3 — на A4P, из A4 — на A1P. Докажите, что все четыре перпендикуляра (или их продолжения) пересекается в одной точке.

Прислать комментарий     Решение


Задача 73617  (#М82)

Темы:   [ Индукция (прочее) ]
[ Принцип крайнего ]
Сложность: 4+
Классы: 7,8,9

Автор: Охитин С.

На кольцевой автомобильной дороге стоят несколько одинаковых автомашин. Если бы весь бензин, имеющийся в этих автомашинах, слили в одну, то эта машина смогла бы проехать по всей кольцевой дороге и вернуться на прежнее место. Докажите, что хотя бы одна из этих машин может объехать всё кольцо, забирая по пути бензин у остальных машин.
Прислать комментарий     Решение


Задача 73618  (#М83)

Темы:   [ Простые числа и их свойства ]
[ Разбиения на пары и группы; биекции ]
Сложность: 7
Классы: 8,9,10,11

Числа 1, 2, ..., n ни при каком n > 1 нельзя разбить на два множества так, чтобы произведение чисел одного из них равнялось произведению чисел другого. Докажите это.
Прислать комментарий     Решение


Задача 53134  (#М84)

 [Задача о бабочке]
Темы:   [ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
Сложность: 5+
Классы: 8,9,10,11

Пусть A — основание перпендикуляра, опущенного из центра данной окружности на данную прямую l. На этой прямой взяты еще две точки B и C так, что AB = AC. Через точки B и C проведены две произвольные секущие, из которых одна пересекает окружность в точках P и Q, вторая — в точках M и N. Пусть прямые PM и QN пересекают прямую l в точках R и S. Докажите, что AR = AS.

Прислать комментарий     Решение


Задача 73620  (#М85)

Темы:   [ Квадратные корни (прочее) ]
[ Рациональные и иррациональные числа ]
[ Индукция (прочее) ]
[ Уравнения в целых числах ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 7-
Классы: 8,9,10

Для любых натуральных чисел a1, a2, ..., am, никакие два из которых не равны друг другу и ни одно из которых не делится на квадрат натурального числа, большего единицы, а также для любых целых и отличных от нуля целых чисел b1, b2, ..., bm сумма

a11/2 · b1 + a21/2 · b2 +...+ am1/2 · bm
не равна нулю. Докажите это.
Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 57]      



© 2004-2013 МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы, Московского института открытого образования и ФЦП "Кадры" .