ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Проставим знаки плюс и минус в 99-й строке треугольника Паскаля. Между первым и вторым числом – минус, между вторым и третьим – плюс, между третьим и четвёртым – минус, потом опять плюс, и так далее. Найдите значение полученного выражения.

Вниз   Решение


Каждую грань кубика разбили на четыре равных квадрата и раскрасили эти квадраты в три цвета так, чтобы квадраты, имеющие общую сторону, были покрашены в разные цвета. Докажите, что в каждый цвет покрашено по 8 квадратиков.

ВверхВниз   Решение


Автор: Эвнин А.Ю.

Таблица 10×10 заполняется по правилам игры "Сапёр": в некоторые клетки ставят по мине, а в каждую из остальных клеток записывают количество мин в клетках, соседних с данной клеткой (по стороне или вершине). Может ли увеличиться сумма всех чисел в таблице, если все "старые" мины убрать, во все ранее свободные от мин клетки поставить мины, после чего заново записать числа по правилам?

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 87332

Темы:   [ Признаки перпендикулярности ]
[ Конкуррентность высот. Углы между высотами. ]
Сложность: 3
Классы: 10,11

В тетраэдре ABCD известно, что AD BC . Докажите, что высоты тетраэдра, проведённые из вершин B и C , пересекаются, причём точка их пересечения лежит на общем перпендикуляре скрещивающихся прямых AD и BC .
Прислать комментарий     Решение


Задача 87333

Темы:   [ Признаки перпендикулярности ]
[ Частные случаи тетраэдров (прочее) ]
Сложность: 3
Классы: 10,11

Высоты, проведённые из вершин B и C тетраэдра ABCD пересекаются. Докажите, что AD BC .
Прислать комментарий     Решение


Задача 109094

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 8,9

В треугольной пирамиде ABCD известно, что AB = 2 , BC = 3 , BD = 4 , AD = 2 , CD = 5 . Докажите, что прямая BD перпендикулярна плоскости ABC .
Прислать комментарий     Решение


Задача 110257

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11

Пусть A , B , C и D – четыре точки в пространстве. Докажите, что если AB = BC и CD = DA , то прямые AC и BD перпендикулярны.
Прислать комментарий     Решение


Задача 110258

Тема:   [ Признаки перпендикулярности ]
Сложность: 3
Классы: 10,11

В пирамиде ABCD медиана, проведённая к стороне AD треугольника ABD , равна половине AD , а медиана, проведённая к стороне CD треугольника BCD , равна половине CD . Докажите, что прямая BD перпендикулярна плоскости ABC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .