ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 127]      



Задача 116607

Темы:   [ Ребусы ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3+
Классы: 6,7

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Прислать комментарий     Решение

Задача 116967

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 5,6,7

Автор: Шноль Д.Э.

Решите ребус:  ЛЕТО + ЛЕС = 2011.

Прислать комментарий     Решение

Задача 35725

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3+
Классы: 8,9,10,11

Для проверки телетайпа, печатающего буквами русского алфавита АБВГДЕЁЖЗИЙКЛМНОПРСТУФХЦЧШЩЪЫЬЭЮЯ передан набор из 9 слов, содержащий все 33 буквы алфавита. В результате неисправности телетайпа на приемном конце получены слова ГЪЙ АЭЁ БПРК ЕЖЩЮ НМЬЧ СЫЛЗ ШДУ ЦХОТ ЯФВИ Восстановите исходный текст, если известно, что характер неисправности таков, что каждая буква заменяется буквой, отстоящей от нее в указанном алфавите не дальше, чем на две буквы. Например, буква Б может перейти в одну из букв А, Б, В, Г. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 66373

Темы:   [ Ребусы ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9

В следующих многозначных числах цифры заменены буквами (одинаковые цифры – одинаковыми буквами, а разные цифры – разными буквами). Оказалось, что ДЕВЯНОСТО делится на 90, а ДЕВЯТКА делится на 9. Может ли СОТКА делиться на 9?
Прислать комментарий     Решение


Задача 102864

Тема:   [ Ребусы ]
Сложность: 3+
Классы: 7,8

Какие буквы соответствуют цифрам частного? Восстановите все цифры, если с = 7.


Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .