ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 127]      



Задача 116672

Темы:   [ Ребусы ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Перебор случаев ]
Сложность: 3
Классы: 7,8,9

На доске написаны четыре трёхзначных числа, в сумме дающие 2012. Для записи их всех были использованы только две различные цифры.
Приведите пример таких чисел.

Прислать комментарий     Решение

Задача 116956

Темы:   [ Ребусы ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 5,6,7

Автор: Шноль Д.Э.

Вот ребус довольно простой:
ЭХ вчетверо больше, чем ОЙ.
АЙ вчетверо больше, чем ОХ.
Найди сумму всех четырёх.

Прислать комментарий     Решение

Задача 35638

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 8,9

Текст М И М О П Р А С Т Е Т И Р А С И С П Д А И С А Ф Е И И Б О Е Т К Ж Р Г Л Е О Л О И Ш И С А Н Н С Й С А О О Л Т Л Е Я Т У И Ц В Ы И П И Я Д П И Щ П Ь П С Е Ю Я Я получен из исходного сообщения перестановкой его букв. Текст У Щ Ф М Ш П Д Р Е Ц Ч Е Ш Ю Ш Ч Д А К Е Ч М Д В К Ш Б Е Е Ч Д Ф Э П Й Щ Г Ш Ф Щ Ц Е Ю Щ Ф П М Е Ч П М Е Р Щ М Е О Ф Ч Щ Х Е Ш Р Т Г Д И Ф Р С Я Ы Л К Д Ф Ф Е Е получен из того же исходного сообщения заменой каждой буквы на другую букву так, что разные буквы заменены разными, а одинаковые - одинаковыми. Восстановите исходное сообщение. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 35668

Темы:   [ Ребусы ]
[ Криптография ]
Сложность: 3
Классы: 7,8,9

Дана криптограмма: $ \begin{array}{ccccc} ФН & \times & Ы & = & ФАФ \\ + & & \times & & - \\ ЕЕ & + & Е & = & НЗ \\ = & & = & & = \\ ИША & + & МР & = & ИМН \end{array} $ Восстановите цифровые значения букв, при которых справедливы все указанные равенства, если разным буквам соответствуют различные цифры. Расставьте буквы в порядке возрастания их цифровых значений и получите искомый текст. (Задача с сайта www.cryptography.ru.)
Прислать комментарий     Решение


Задача 86091

Тема:   [ Ребусы ]
Сложность: 3
Классы: 6,7

В числах МИХАЙЛО и ЛОМОНОСОВ каждая буква обозначает цифру (разным буквам соответствуют разные цифры). Известно, что у этих чисел произведения цифр равны. Могут ли оба числа быть нечётными?
Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .