ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



Задача 57082

Темы:   [ Правильные многоугольники ]
[ Поворот помогает решить задачу ]
[ Наибольшая или наименьшая длина ]
[ Векторы помогают решить задачу ]
[ Экстремальные свойства правильных многоугольников ]
Сложность: 4
Классы: 9,10

Докажите, что сумма расстояний от произвольной точки X до вершин правильного n-угольника будет наименьшей, если X – центр n-угольника.

Прислать комментарий     Решение

Задача 66224

Темы:   [ Шестиугольники ]
[ Вписанные и описанные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
[ Векторы помогают решить задачу ]
[ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 9,10

Автор: Белухов Н.

Выпуклый шестиугольник A1A2...A6 описан около окружности ω радиуса 1. Рассмотрим три отрезка, соединяющие середины противоположных сторон шестиугольника. Для какого наибольшего r можно утверждать, что хотя бы один из этих отрезков не короче r?

Прислать комментарий     Решение

Задача 86114

Темы:   [ Площадь треугольника (через высоту и основание) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Поворот помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 9,10

На сторонах треугольника ABC вовне построены квадраты ABB1A2, BCC1B2 и CAA1C2. На отрезках A1A2 и B1B2 также во внешнюю сторону от треугольников AA1A2 и BB1B2 построены квадраты A1A2A3A4 и B1B2B3B4. Докажите, что  A3B4 || AB.

Прислать комментарий     Решение

Задача 116249

Темы:   [ Четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Радикальная ось ]
[ Векторы помогают решить задачу ]
Сложность: 4
Классы: 8,9

Дан такой выпуклый четырехугольник ABCD, что  AB = BC  и  AD = DC.  Точки K, L и M – середины отрезков AB, CD и AC соответственно. Перпендикуляр, проведенный из точки A к прямой BC, пересекается с перпендикуляром, проведенным из точки C к прямой AD, в точке H. Докажите, что прямые KL и HM перпендикулярны.

Прислать комментарий     Решение

Задача 78140

Темы:   [ Индукция в геометрии ]
[ Метод координат на плоскости ]
[ Геометрические неравенства (прочее) ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

Бесконечная плоская ломаная A0A1...An..., все углы которой прямые, начинается в точке A0 с координатами x = 0, y = 1 и обходит начало координат O по часовой стрелке. Первое звено ломаной имеет длину 2 и параллельно биссектрисе 4-го координатного угла. Каждое из следующих звеньев пересекает одну из координатных осей и имеет наименьшую возможную при этом целочисленную длину. Расстояние OAn = ln. Сумма длин первых n звеньев ломаной равна sn. Доказать, что найдётся n, для которого $ {\frac{s_n}{l_n}}$ > 1958.
Прислать комментарий     Решение


Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 100]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .