Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 203]
|
|
|
Сложность: 4- Классы: 7,8,9
|
Набор пятизначных чисел $\{N_1, \dots, N_k\}$ таков, что любое
пятизначное число, все цифры которого идут в возрастающем порядке, совпадает хотя бы в одном разряде хотя бы с одним из чисел $N_1, \dots, N_k$.
Найдите наименьшее возможное значение $k$.
|
|
|
Сложность: 4 Классы: 9,10,11
|
К некоторому натуральному числу справа последовательно приписали два двузначных числа. Полученное число оказалось равным кубу суммы трёх исходных чисел. Найдите все возможные тройки исходных чисел.
|
|
|
Сложность: 4 Классы: 9,10,11
|
a1, a2, ..., a101 – такая перестановка чисел 2, 3, ..., 102, что ak делится на k при каждом k. Найти все такие перестановки.
На полосе бумаги написаны подряд 60 знаков: "×" и "0". Эту полоску разрезают на куски с симметричным расположением знаков. Например:
0, × ×, 0 × × × × 0, × 0 ×, ... .
а) Докажите, что существует такой способ разрезания, при котором кусков не больше 24.
б) Приведите пример такого расположения знаков, при котором меньше 15 кусков получить нельзя.
В весеннем туре турнира городов 2000 года старшеклассникам страны N было предложено шесть задач. Каждую задачу решило ровно 1000 школьников, но
никакие два школьника не решили вместе все шесть задач. Каково наименьшее возможное число старшеклассников страны N, принявших участие в весеннем туре?
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 203]