Страница:
<< 1 2
3 >> [Всего задач: 15]
В круге проведены два перпендикулярных диаметра.
Рассмотрим четыре круга, диаметрами которых служат четыре
получившихся радиуса исходной окружности (рис.1). Докажите, что
суммарная площадь попарно общих частей этих кругов равна
площади части исходного круга, лежащей вне рассматриваемых
четырёх кругов.
В окружность вписана трапеция ABCD, причём её основания
AB = 1 и DC = 2. Обозначим точку пересечения диагоналей этой
трапеции через F. Найдите отношение суммы площадей треугольников
ABF и CDF к сумме площадей треугольников AFD и BCF.
В трапеции ABCD диагонали AC и DB взаимно перпендикулярны, ∠ABD = ∠ACD. На продолжениях боковых сторон AB и DC за большее основание AD отложены отрезки AM и DN так, что получается новая трапеция MADN, подобная трапеции ABCD. Найдите площадь трапеции MBCN, если площадь трапеции ABCD равна S, а сумма углов при большем основании равна 150°.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из прямого угла прямоугольного треугольника опущена высота, и в образовавшиеся треугольники вписаны два квадрата (как на рисунке).

Чему может быть равна сумма площадей этих квадратов, если длина биссектрисы прямого угла треугольника равна $1$?
На стороне BC треугольника ABC как на диаметре построена
окружность, пересекающая отрезок AB в точке D. Найдите отношение
площадей треугольников ABC и BCD, если известно, что AC = 15,
BC = 20 и
ABC =
ACD.
Страница:
<< 1 2
3 >> [Всего задач: 15]