ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 82]      



Задача 115292

Темы:   [ Три точки, лежащие на одной прямой ]
[ Ортоцентр и ортотреугольник ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Диаметр, основные свойства ]
[ Вписанные и описанные окружности ]
[ Свойства симметрий и осей симметрии ]
Сложность: 4-
Классы: 8,9

Дан остроугольный треугольник ABC. Точки B' и C' симметричны соответственно вершинам B и C относительно прямых AC и AB. Пусть P – точка пересечения описанных окружностей треугольников ABB' и ACC', отличная от A. Докажите, что центр описанной окружности треугольника ABC лежит на прямой PA.

Прислать комментарий     Решение

Задача 108240

Темы:   [ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 8,9

В треугольнике ABC на стороне AC нашлись такие точки D и E , что AB=AD и BE=EC ( E между A и D ). Точка F – середина дуги BC (не содержащей точки A ) окружности, описанной около треугольника ABC . Докажите, что точки B , E , D и F лежат на одной окружности.
Прислать комментарий     Решение


Задача 108626

Темы:   [ Ортоцентр и ортотреугольник ]
[ Вспомогательная окружность ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9

Точка H – ортоцентр треугольника ABC , а точки H1 и H2 – её проекции на биссектрисы внутреннего и внешнего углов при вершине B . Докажите, что прямая H1H2 делит сторону AC пополам.
Прислать комментарий     Решение


Задача 108628

Темы:   [ Вспомогательная окружность ]
[ Отрезок, видимый из двух точек под одним углом ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4
Классы: 8,9

Внутри неравнобедренного треугольника ABC взята такая точка O , что OBC = OCB = 20o . Кроме того BAO + OCA = 70o . Найдите угол A .
Прислать комментарий     Решение


Задача 65029

Темы:   [ Треугольники с углами $60^\circ$ и $120^\circ$ ]
[ Вписанные и описанные окружности ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Симметрия помогает решить задачу ]
Сложность: 3+
Классы: 8,9

В треугольнике ABC  ∠A = 60°.  Серединный перпендикуляр к отрезку AB пересекает прямую AC в точке C1. Серединный перпендикуляр к отрезку AC пересекает прямую AB в точке B1. Докажите, что прямая B1C1 касается вписанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 82]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .