ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 458]      



Задача 54949

Темы:   [ Отношения площадей (прочее) ]
[ Площадь треугольника (прочее) ]
Сложность: 2+
Классы: 8,9

На сторонах AB и AC треугольника ABC, площадь которого равна 36 см2, взяты соответственно точки M и K так, что AM/MB = 1/3, а AK/KC = 2/1. Найдите площадь треугольника AMK.

Прислать комментарий     Решение


Задача 78554

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Метод ГМТ ]
Сложность: 2+
Классы: 9,10

Внутри данного треугольника ABC найти такую точку O, чтобы площади треугольников AOB, BOC, COA относились как 1 : 2 : 3.
Прислать комментарий     Решение


Задача 116347

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9,10

Точки M и N расположены на стороне BC треугольника ABC, а точка K – на стороне AC, причём BM : MN : NC = 1 : 1 : 2 и CK : AK = 1 : 4. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника AMNK.

Прислать комментарий     Решение

Задача 116348

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Площадь треугольника (через высоту и основание) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 2+
Классы: 8,9,10

Точки M и N расположены на стороне AC треугольника ABC, а точки K и L – на стороне AB, причём AM : MN : NC = 1 : 3 : 1 и AK = KL = LB. Известно, что площадь треугольника ABC равна 1. Найдите площадь четырёхугольника KLNM.

Прислать комментарий     Решение

Задача 54945

Темы:   [ Медиана делит площадь пополам ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 2+
Классы: 8,9

Докажите, что медиана разбивает треугольник на два равновеликих треугольника.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .