ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 458]      



Задача 56752

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Дан треугольник ABC. Найдите все такие точки P, что площади треугольников ABP, BCP и ACP равны.
Прислать комментарий     Решение


Задача 56753

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

Внутри данного треугольника ABC найдите такую точку O, что площади треугольников BOL, COM и AON равны (точки L, M и N лежат на сторонах AB, BC и CA, причем  OL || BC, OM || AC и  ON || AB; рис.).


Прислать комментарий     Решение

Задача 56754

Тема:   [ Медиана делит площадь пополам ]
Сложность: 3
Классы: 9

На продолжениях сторон треугольника ABC взяты точки A1, B1 и C1 так, что  $ \overrightarrow{AB_1}$ = 2$ \overrightarrow{AB}$, $ \overrightarrow{BC_1}$ = 2$ \overrightarrow{BC}$ и  $ \overrightarrow{CA_1}$ = 2$ \overrightarrow{AC}$. Найдите площадь треугольника A1B1C1, если известно, что площадь треугольника ABC равна S.
Прислать комментарий     Решение


Задача 102842

Тема:   [ Отношения площадей ]
Сложность: 3
Классы: 7,8

Сравнение площадей. Точки E и F — середины сторон BC и CD квадрата ABCD. Отрезки AE и BF пересекаются в точке K. Что больше: площадь треугольника AKF или площадь четырехугольника KECF?
Прислать комментарий     Решение


Задача 108901

Темы:   [ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне BC треугольника ABC отмечены такие точки M и N, что  CM = MN = NB.  К стороне BC в точке N восставлен перпендикуляр, пересекающий сторону AB в точке K. Оказалось, что площадь треугольника AMK в 4,5 раза меньше площади исходного треугольника. Докажите, что треугольник ABC – равнобедренный.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .