|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В треугольной пирамиде все 4 грани имеют одинаковую площадь. Докажите, что они равны. Докажите, что если отрезок B1C1 антипараллелен стороне BC, то B1C1 Дан остроугольный треугольник ABC. Для произвольной прямой l обозначим через la, lb, lc прямые, симметричные l относительно сторон треугольника, а через Il – центр вписанной окружности треугольника, образованного этими прямыми. Найдите геометрическое место точек Il. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Даны две концентрические окружности и точка A внутри меньшей из них. Угол величиной α с вершиной в A высекает на этих окружностях по дуге. Докажите, что если дуга большей окружности имеет угловой размер α, то и дуга меньшей имеет угловой размер α.
Даны две концентрические окружности. С помощью циркуля и линейки проведите прямую, пересекающую эти окружности так, чтобы меньшая хорда была равна половине большей.
Две окружности с радиусами 1 и 2 имеют общий центр в точке O. Вершина A правильного треугольника ABC лежит на большей окружности, а середина стороны BC – на меньшей. Чему может быть равен угол BOC?
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|