ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 131]      



Задача 116632

Темы:   [ Выпуклые многоугольники ]
[ Системы точек и отрезков (прочее) ]
[ Индукция в геометрии ]
[ Подсчет двумя способами ]
[ Вспомогательная раскраска (прочее) ]
Сложность: 4
Классы: 8,9,10

На доске нарисован выпуклый 2011-угольник. Петя последовательно проводит в нём диагонали так, чтобы каждая вновь проведённая диагональ пересекала по внутренним точкам не более одной из проведённых ранее диагоналей. Какое наибольшее количество диагоналей может провести Петя?

Прислать комментарий     Решение

Задача 58116

Тема:   [ Выпуклые многоугольники ]
Сложность: 4+
Классы: 8,9

Выпуклый многоугольник A1...An лежит внутри окружности S1, а выпуклый многоугольник B1...Bm — внутри S2. Докажите, что если эти многоугольники пересекаются, то одна из точек A1, ..., An лежит внутри S2 или одна из точек B1, ..., Bm лежит внутри S1.
Прислать комментарий     Решение


Задача 64744

Темы:   [ Выпуклые многоугольники ]
[ Геометрические неравенства (прочее) ]
[ Гомотетия помогает решить задачу ]
[ Индукция в геометрии ]
[ Малые шевеления ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Два выпуклых многоугольника A1A2...An и B1B2...Bn  (n ≥ 4)  таковы, что каждая сторона первого больше соответствующей стороны второго.
Может ли оказаться, что каждая диагональ второго больше соответствующей диагонали первого?

Прислать комментарий     Решение

Задача 65363

Темы:   [ Выпуклые многоугольники ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Окружность, вписанная в угол ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Белухов Н.

Докажите, что любой выпуклый четырёхугольник можно разрезать на пять многоугольников, каждый из которых имеет ось симметрии.

Прислать комментарий     Решение

Задача 79340

Темы:   [ Выпуклые многоугольники ]
[ Объединение, пересечение и разность множеств ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Примеры и контрпримеры. Конструкции ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 4+
Классы: 8,9,10

Найти наименьшее n такое, что любой выпуклый 100-угольник можно получить в виде пересечения n треугольников. Докажите, что для меньших n это можно сделать не с любым выпуклым 100-угольником.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 131]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .