|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции: 1) съедает какую-то котлету вместе со всеми сидящими на ней мухами; 2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух). Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу. Квадрат разбит на n² равных квадратиков. Про некоторую ломаную известно, что она проходит через центры всех квадратиков (ломаная может пересекать сама себя). Каково минимальное число звеньев у этой ломаной? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 841]
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 841] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|