ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 329]      



Задача 35183

Тема:   [ Гомотетичные окружности ]
Сложность: 3
Классы: 9,10

Внутри угла расположены три окружности S1, S2, S3, каждая из которых касается двух сторон угла, причем окружность S2 касается внешним образом окружностей S1 и S3. Известно, что радиус окружности S1 равен 1, а радиус окружности S3 равен 9. Чему равен радиус окружности радиус окружности S2?
Прислать комментарий     Решение


Задача 35747

Темы:   [ Гомотетия и поворотная гомотетия (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Графики и ГМТ на координатной плоскости ]
Сложность: 3
Классы: 9,10,11

Докажите, что графики функций  y = x²  и  y = 2x²  являются подобными фигурами.

Прислать комментарий     Решение

Задача 53773

Тема:   [ Гомотетия помогает решить задачу ]
Сложность: 3
Классы: 8,9

На сторонах AB и AC треугольника ABC взяты соответственно точки M и N, причём  MN || BC.  На отрезке MN взята точка P, причём  MP = 1/3 MN.  Прямая AP пересекает сторону BC в точке Q. Докажите, что  BQ = 1/3 BC.

Прислать комментарий     Решение

Задача 57981

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

В трапеции точка пересечения диагоналей равноудалена от прямых, на которых лежат боковые стороны. Докажите, что трапеция равнобедренная.
Прислать комментарий     Решение


Задача 57982

Тема:   [ Гомотетичные многоугольники ]
Сложность: 3
Классы: 9

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P — произвольная точка. Прямая la проходит через точку A параллельно прямой PA1; прямые lb и lc определяются аналогично. Докажите, что:
а) прямые la, lb и lc пересекаются в одной точке Q;
б) точка M лежит на отрезке PQ, причем PM : MQ = 1 : 2.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .