|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Ссылки по теме:
Статья В. Уроева "Инверсия" Материалы по этой теме: Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дана строго возрастающая функция $f\colon \mathbb{N}_0\to \mathbb{N}_0$ (где $\mathbb{N}_0$ — множество целых неотрицательных чисел), которая удовлетворяет соотношению $f(n+f(m))=f(n)+m+1$ для любых $m,n\in \mathbb{N}_0$. Найдите все значения, которые может принимать $f(2023)$. Разрежьте фигуру ниже на четыре части одинакового периметра так, чтобы среди этих частей не было равных. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113]
Пусть при инверсии с центром O точка A переходит в A', а точка B – в B'. Докажите, что треугольники OAB и OB'A' подобны.
Докажите, что отображение w =
Точки X' и Y' – образы точек X и Y при инверсии относительно окружности с центром O радиуса R, причём
точки X и Y отличны от O.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 113] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|