ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 408]      



Задача 53209

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

В треугольнике ABC проведены медианы AM и BP. Известно, что  ∠APB = ∠BMA,  cos∠ACB = 0,8,  BP = 1.  Найдите площадь треугольника ABC .

Прислать комментарий     Решение

Задача 53707

Темы:   [ Теорема синусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Площадь четырехугольника ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Остроугольный равнобедренный треугольник и трапеция вписаны в окружность. Одно основание трапеции является диаметром окружности, а боковые стороны параллельны боковым сторонам треугольника. Найдите отношение площадей трапеции и треугольника.

Прислать комментарий     Решение

Задача 54181

Темы:   [ Теорема Пифагора (прямая и обратная) ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Стороны треугольника равны 10, 17, и 21. Найдите высоту, проведённую к большей стороне.

Прислать комментарий     Решение

Задача 54573

Темы:   [ Построение треугольников по различным элементам ]
[ Площадь треугольника (через высоту и основание) ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 3
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по трём высотам.

Прислать комментарий     Решение

Задача 54901

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Неравенства с площадями ]
Сложность: 3
Классы: 8,9

В треугольнике PQR сторона PQ не больше чем 9, сторона PR не больше чем 12. Площадь треугольника не меньше чем 54.
Найдите его медиану, проведённую из вершины P.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 408]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .