ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 408]      



Задача 108993

Темы:   [ Экстремальные свойства треугольника (прочее) ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9,10

Какую наибольшую площадь может иметь треугольник, стороны которого a,b,c заключены в следующих пределах:

0<a<= 1<= b<= 2<= c<= 3?

Прислать комментарий     Решение

Задача 111053

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Диагонали трапеции равны 12 и 6, а сумма оснований равна 14. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 111054

Темы:   [ Перенос стороны, диагонали и т.п. ]
[ Формула Герона ]
Сложность: 3
Классы: 8,9

Диагонали трапеции равны 13 и 3, а сумма оснований равна 14. Найдите высоту трапеции.
Прислать комментарий     Решение


Задача 111450

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Длины сторон, высот, медиан и биссектрис ]
Сложность: 3
Классы: 8,9

Пусть c – длина гипотенузы, – длина биссектрисы одного из острых углов прямоугольного треугольника. Найдите катеты.
Прислать комментарий     Решение


Задача 111459

Темы:   [ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

В полукруг радиуса R с центром в точке O вписан квадрат ABCD так, что точки A и D лежат на диаметре, а точки B и C – на окружности. Найдите радиус окружности, вписанной в треугольник OBC .
Прислать комментарий     Решение


Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 408]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .