ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 408]      



Задача 54952

Темы:   [ Отношение площадей подобных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

Докажите, что отношение площадей подобных треугольников равно квадрату их коэффициента подобия.

Прислать комментарий     Решение


Задача 55159

Темы:   [ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3
Классы: 8,9

Докажите, что площадь выпуклого четырёхугольника ABCD не превосходит $ {\frac{1}{2}}$(AB . BC + AD . DC).

Прислать комментарий     Решение


Задача 102320

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В треугольнике DEF угол DEF равен 60o. Найдите площадь треугольника DEF, если известно, что DF = 3, EF = $ {\frac{6}{\sqrt{3}}}$.
Прислать комментарий     Решение


Задача 102321

Темы:   [ Теорема косинусов ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC сторона AC равна 4, а сторона BC равна $ {\frac{8}{\sqrt{2}}}$. Найдите площадь треугольника ABC, если известно, что угол ABC равен 45o.
Прислать комментарий     Решение


Задача 54286

Темы:   [ Длины сторон, высот, медиан и биссектрис ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Применение тригонометрических формул (геометрия) ]
Сложность: 3
Классы: 8,9

Найдите площадь треугольника, если две его стороны равны 35 и 14 см, а биссектриса угла между ними равна 12 см.

Прислать комментарий     Решение


Страница: << 20 21 22 23 24 25 26 >> [Всего задач: 408]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .