ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 149]
Окружность и прямая касаются в точке M. Из точек A и B этой окружности опущены перпендикуляры на прямую, равные a и b соответственно. Найдите расстояние от точки M до прямой AB.
На одной из сторон угла взяты две точки A и B. Найдите на другой стороне угла точку C такую, чтобы угол ACB был наибольшим. Постройте точку C с помощью циркуля и линейки.
В некоторый угол B вписаны две непересекающиеся окружности. Окружность большего радиуса касается сторон этого угла в точках A и C, меньшего — в точках A1 и C1(точки A, A1 и C, C1 лежат на разных сторонах угла B). Прямая AC1 пересекает окружности большего и меньшего радиусов в точках E и F соответственно. Найдите отношение площадей треугольников ABC1 и A1BC1, если A1B = 2, EF = 1, а длина AE равна среднему арифметическому длин BC1 и EF.
О треугольнике ABC известно, что
На стороне угла с вершиной O взяты точки A и B (A между O и
B), причём OA = 3AB. Через точки A и B проведена окружность,
касающаяся другой стороны угла в точке D. На луче OD взята точка E
(D — между O и E). Известно, что OE = m,
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |