Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 120]
[Задача Люилье]
|
|
Сложность: 4 Классы: 8,9
|
Пусть
r — радиус вписанной окружности, а
ra ,
rb и
rc —
радиусы вневписанных окружностей треугольника
ABC , касающихся
сторон
BC=a ,
AC=b ,
AB=c соответственно;
p — полупериметр
треугольника
ABC ,
S — его площадь. Докажите, что
а)
=
+
+
; б)
S =
.
|
|
Сложность: 5 Классы: 9,10,11
|
Дан остроугольный треугольник ABC. Пусть A' – точка, симметричная A относительно BC, OA – центр окружности, проходящей через A и середины отрезков A'B и A'C. Точки OB и OC определяются аналогично. Найдите отношение радиусов описанных окружностей треугольников
ABC и OAOBOC.
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Длины двух сторон треугольника равны a, а длина третьей стороны равна b. Вычислите радиус его описанной окружности.
В прямоугольном треугольнике на гипотенузе
AB от вершины
A
отложим отрезок
AD, равный катету
AC, а от вершины
B - отрезок
BE,
равный катету
BC. Докажите, что длина отрезка
DE равна диаметру
окружности, вписанной в треугольник
ABC.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 120]