ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 320]      



Задача 102694

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате ABCD точка M лежит на стороне BC, а точка N — на стороне AB. Прямые AM и DN пересекаются в точке O.Найдите площадь квадрата, если известно, что DN = 4, AM = 3, а косинус угла DOA равен q.

Прислать комментарий     Решение


Задача 102695

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4
Классы: 8,9

В квадрате PQRS точка B лежит на стороне RS, а точка A — на стороне SP. Отрезки QB и RA пересекаются в точке T, причём косинус угла BTR равен -0, 2. Найдите сторону квадрата, если известно, что RA = 10, а QB = a.

Прислать комментарий     Решение


Задача 108629

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

В остроугольном треугольнике ABC проведены высоты BD и AE , пересекающиеся в точке P . Докажите, что AB2 = AP· AE + BP· BD .
Прислать комментарий     Решение


Задача 111524

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 4
Классы: 8,9

Найдите углы равнобедренного треугольника, зная, что точка пересечения его высот лежит на вписанной окружности.
Прислать комментарий     Решение


Задача 66729

Темы:   [ Тригонометрические соотношения в прямоугольном треугольнике ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Площадь треугольника (через две стороны и угол между ними) ]
Сложность: 5
Классы: 8,9,10,11

Автор: Фольклор

В остроугольном неравнобедренном треугольнике ABC с центром описанной окружности O проведены высоты $AH_a$ и $BH_b$. Точки X и Y симметричны точкам $H_a$ и $H_b$ относительно середин сторон BC и CA соответственно. Докажите, что прямая CO делит отрезок XY пополам.

Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 320]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .