ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 61251

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Тригонометрия (прочее) ]
Сложность: 5
Классы: 10,11

Пусть числа uk определены как и в предыдущей задаче. Докажите тождества:

а) 1 - u1 + u2 - u3 +...+ u2n = 2n(1 - cos x)(1 - cos 3x)...(1 - cos(2n - 1)x);

б) 1 - u12 + u22 - u32 +...+ u2n2 = (- 1)n$ {\dfrac{\sin(2n+2)x\cdot
\sin(2n+4)x\cdot\ldots \cdot\sin4nx}{\sin
2nx\cdot\sin2(n-1)x\cdot\ldots\cdot\sin 2x}}$.
Прислать комментарий     Решение

Задача 60866

Темы:   [ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Рациональные и иррациональные числа ]
[ Тригонометрия (прочее) ]
Сложность: 3+
Классы: 9,10,11

Дана квадратная сетка на плоскости и треугольник с вершинами в узлах сетки. Докажите, что тангенс любого угла в треугольнике — число рациональное.

Прислать комментарий     Решение

Задача 61099

 [Многочлены Чебышева]
Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Многочлены Чебышева ]
[ Тригонометрия (прочее) ]
[ Комплексные числа помогают решить задачу ]
[ Треугольник Паскаля и бином Ньютона ]
Сложность: 4-
Классы: 9,10,11

а) Используя формулу Муавра, докажите, что  cos nx = Tn(cos x),  sin nx = sin x Un–1(cos x),  где Tn(z) и Un(z) – многочлены степени n.
При этом по определению  U0(z) = 1.
б) Вычислите в явном виде эти многочлены для  n = 0, 1, 2, 3, 4, 5.

  Многочлены Tn(z) и Un(z) называются многочленами Чебышёва первого и второго рода соответственно.

Прислать комментарий     Решение

Задача 60851

Темы:   [ Рациональные и иррациональные числа ]
[ Корни. Степень с рациональным показателем (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 4
Классы: 8,9,10

Докажите иррациональность следующих чисел:

а) $ \sqrt[3]{17}$;     д) cos 10o;    
б) $ \sqrt{2}$ + $ \sqrt{3}$;     е) tg 10o;    
в) $ \sqrt{2}$ + $ \sqrt{3}$ + $ \sqrt{5}$;     ж) sin 1o;    
г) $ \sqrt[3]{3}$ - $ \sqrt{2}$; з) log23.

Прислать комментарий     Решение

Задача 61336

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Предел последовательности, сходимость ]
[ Тригонометрия (прочее) ]
Сложность: 5+
Классы: 10,11

Докажите равенство

$\displaystyle {\frac{2}{\pi}}$ = $\displaystyle \sqrt{\frac{1}{2}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}$ . $\displaystyle \sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}+\frac{1}{2}
\sqrt{\frac{1}{2}}}}$...


Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .