|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Укажите все такие натуральные n и целые неравные друг другу x и y, при которых верно равенство: x + x² + x4 + ... + x2n = y + y² + y4 + ... + y2n. Внутри квадрата со стороной 1 расположено несколько окружностей, сумма длин которых равна 10. Пусть a, b, c – стороны треугольника, p – его полупериметр, а r и R – радиусы вписанной и описанной окружностей соответственно. Составьте уравнение с коэффициентами, зависящими от p, r, R, корнями которого являются числа a, b, c. Докажите равенство |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]
Найдите все неотрицательные решения системы уравнений:
Решить систему уравнений:
Решить систему уравнений:
а) Числа a, b, c являются тремя из четырёх корней многочлена x4 – ax3 – bx + c. Найдите все такие многочлены.
Решите систему
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|