|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Неориентированный граф называется четно-нечетным, если найдутся две его вершины, между которыми существует пути как из четного, так и из нечетного числа ребер. Напишите программу, которая: a) определяет, является ли заданный граф четно-нечетным; б) В случае отрицательного ответа на пункт а) находит максимальное подмножество X вершин графа такое, что для любых двух вершин i и j из X выполняется следующее условие: все пути между i и j состоят из четного числа ребер. Входные данные Первая строка входного файла содержит число вершин графа N (1 ≤ N ≤ 100), а каждая последующая – пару чисел (i, j), означающих, что в графе присутствует ребро, соединяющее вершины с номерами i и j. Выходные данные Первая строка выходного файла должна содержать ответ на пункт А в форме YES/NO. В случае отрицательного ответа на пункт А вторая строка должна содержать количество вершин в множестве X, а третья – номера вершин из этого множества в порядке возрастания, записанные через пробел. Если вариантов решений несколько, то достаточно вывести любое из них. Пример входного файла 3 1 2 Пример выходного файла NO 2 2 3 Внутри окружности с центром O дана точка A. Найдите точку M окружности, для которой угол OMA максимален. а) p, p + 10, p + 14 – простые числа. Найдите p. б) p, 2p + 1, 4p + 1 – простые числа. Найдите p. Докажите утверждение обратное тому, что было
в задаче 60668: При каких a и b многочлен P(x) = (a + b)x5 + abx² + 1 делится на x² – 3x + 2? Высота SO правильной четырёхугольной пирамиды SABCD образует с боковым ребром угол α , объём этой пирамиды равен V . Вершина второй правильной четырёхугольной пирмиды находится в точке S , центр основания – в точке C , а одна из вершин основания лежит на прямой SO . Найдите объём общей части этих пирамид. |
Страница: 1 2 3 >> [Всего задач: 15]
На координатной плоскости изобразите множество точек, удовлетворяющих неравенству x²y – y ≥ 0.
При каком натуральном K величина
По положительным числам х и у вычисляют а = 1/y и b = y + 1/x. После этого находят С – наименьшее число из трёх: x, a и b.
Доказать, что если |ax² – bx + c| < 1 при любом x из отрезка [–1, 1], то и |(a + b)x² + c| < 1 на этом отрезке.
Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.
Страница: 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|